图1:三款调音台幅频响应图

图2:用Smaart v7测得的三款调音台频率响应图

由图可见三款产品的频率响应都能达到要求,幅频响应在±0.5dB之内,相频响应都在±30°之内,这其中还有一定的测量误差。而三者之间的幅频响应差别还是显而易见的,B型号的频率响应明显比A和C差一些。

二、总谐波失真及噪音(THD+N),包含了总谐波失真和本底噪音两项关键指标,可以反映出设备的A/D,D/A和模拟电路的用料档次的设计水平。

图3a. 三款调音台的THD+N Ratio测试图

图3b. 三款调音台的THD+N Level测试图

对于数字调音台,我们不仅要关心话放增益在0dB时的THD+N比率,还需要了解到,话放增益在不同位置时的情况,因为这是使用中的实际情形。话放的增益在不同大小时,其引入的噪音和失真也是不同的,了解这一点对于用户正确设置增益也很有参考意义。

图4. A型号调音台话放增益在不同时的THD+N Level

图5. B型号调音台话放增益在不同时的THD+N Level

图6. C型号调音台话放增益在不同时的THD+N Level

可以看出,不论是哪个品牌的产品,随着话放增益的提高,THD+N的电平会随之增高,当增益接近最大值60 dB时,THD+N急剧升高。在使用调音台时,需要合理设置Gain值,才能实现最佳信噪比和足够的动态余量。过低的输入增益,会导致信噪比变差,而过高的输入增益会导致失真变大。太低的输入增益,因为本底噪声是恒定大小的,信号相对于本底噪声比值不够高。太高的输入增益,虽然信号和噪声都随之放大,信噪比可以认为变化不大,但是失真曲线发生了变化,某些频段的失真会明显增加!

从上面三张图可以看出:A、B两张台的话放是类似的设计,只是本底噪声和失真不同; C调音台虽然本底噪声最低,但在高增益的情况下失真在整个中频段增加明显,说明C调音台话放设计,不如A调音台。

在不同增益情况下的失真曲线, 如何看出话放设计的水平呢? 不同增益情况下失真曲线不一样,说明不同话放的失真线性度不同。好的话放应该是:失真曲线在不同增益情况下,随着增益增加多少个dB,失真就平行增加多少个dB, 也就是说非常线性。不应该出现话放增益增加以后,失真增加的dB数,比增益增加的dB数要高; 也不应该出现某些频段的失真增加特别多的情况。理想的话放失真曲线应该是:整个20Hz-20 kHz频段,保持平直并且是线性变化的。

三、最大电平(Maximum Level),是指调音台在不产生明显失真前的最大输入或输出电压,受通用元器件的耐压限制。专业级调音台的输入输出电平一般能达到+22 dBu,在这个电平范围之内总谐波失真率(THD Ratio)能保持在标称值之内,而达到最大电平的临界值时,总谐波失真率急剧上升,远远超出标称值。因而最大电平在AP测试仪中是以总谐波失真率的电平步进测试(Stepped Level Sweep)来体现的。图7为三款调音台在不同测试电平下的总谐波失真率。

图7.三款调音台的THD Ratio vs Measured Level图

图中可见,三款调音台的最大电平基本都在+21dBu—+22 dBu左右,差别不大,都可以达到专业级设备的要求。我们也应注意到,B型号调音台的总谐波失真率总体高于A和C调音台。

四、信噪比(SNR)主要取决于测试时的驱动电平和设备本底噪音之间的比值。因此测试电平的大小对测试结果影响较大,在标注参数时必须要明确测试电平。

图8. A型号调音台的信噪比 1 kHz,0 dBu

图9. B型号调音台的信噪比 1 kHz,0 dBu

图10. C型号调音台的信噪比 1 kHz,0 dBu

五、串扰(Crosstalk)

串扰是两个相邻信号通道之间的互感和互容引起的噪音,体现了通道之间的隔离度。这项指标的数值越低越好,能达到-90 dB已经是很好的表现了。

图11. 三款调音台的串扰对比

六、共模抑制比(CMRR)

共模抑制比是指差分放大器对同时加到两个输入端上的共模信号的抑制能力,代表了平衡放大电路(由差分电路组成)的平衡度,当完全平衡时,信号传输过程中感应到的外界噪音可以得到最大的抑制。这个指标的数值越高越好,一般能达到60 dB已经很不错了。

图12. A调音台的共模抑制比

图13. B调音台的共模抑制比

图14. C调音台的共模抑制比

需要指出的是,CMRR的测量值,容易受到测试激励信号电平和调音台增益设置的影响。三张调音台的实测参数与官方资料参数有所出入,主要是因为测试电平和调音台的增益设置不一致造成的。上图可见,三款调音台的共模抑制比的差别非常明显。

通过上述测试对比,我们可以基本判断,在各项性能上,C的指标最高,A其次,B型号最低。这些指标对用户的意义是什么呢?——是音质的差别,而这背后是电路设计和电路元器件的选用上差别。对于数字调音台来说,话放的电路设计和元器件选用,A/D、D/A转换芯片,这些很大程度上决定了其性能。入门级的调音台为了实现大众化的价格,往往不得不在音质和成本之间折中。我们分别将手头的3个型号的调音台的进行拆机,分别看看其电路设计和元器件用料。

图15. 输入电路模块对比图

图16. 输出电路模块对比图

我们看到,三款产品的电子元器件的选用还是有所区别的。

接插件的选用上,A和C都选用Neutrik品牌的XLR插头插座,B型号则采用普通的XLR接插件。

输入模块的元器件选择上,A和C都选用了大量的JAMICON电解电容,A型号还选用了DECON音频耦合电容,而B型号选用的电容则较为一般;A型号的输入电路选用了特制音频电阻,而B型号选用普通的贴片电阻;

在A/D转换芯片的选用上,三款调音台不约而同地选用了CIRRUS LOGIC CS5368八通道ADC芯片;输出部分的DAC则有所区别,A型号选用的CIRRUS LOGIC双通道DAC芯片在性能指标上优于B型号选用的CIRRUS LOGIC八通道DAC芯片。

总体来说,电子元件的档次和音频性能是呈正相关的。用户在选择产品时,也应该清楚功能相近的产品,在性能上的差异的原因所在,根据自己的投资定位来把握性能和价位的平衡。

欢迎转载,转载请注明出处!

��点击以下品牌查看企业精彩案例

【EV】

��点击或发送以下关键词查看

现场:

人物:返回搜狐,查看更多

top
Copyright © 2088 世界杯四强_世界杯裁判 - tylwn.com All Rights Reserved.
友情链接